首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51117篇
  免费   4388篇
  国内免费   3283篇
电工技术   1180篇
综合类   2800篇
化学工业   14216篇
金属工艺   4317篇
机械仪表   3157篇
建筑科学   854篇
矿业工程   583篇
能源动力   2009篇
轻工业   7482篇
水利工程   243篇
石油天然气   2070篇
武器工业   326篇
无线电   5955篇
一般工业技术   9602篇
冶金工业   1484篇
原子能技术   1001篇
自动化技术   1509篇
  2024年   110篇
  2023年   763篇
  2022年   1073篇
  2021年   1587篇
  2020年   1636篇
  2019年   1651篇
  2018年   1522篇
  2017年   1816篇
  2016年   1888篇
  2015年   1813篇
  2014年   2601篇
  2013年   3210篇
  2012年   3449篇
  2011年   3849篇
  2010年   2709篇
  2009年   2858篇
  2008年   2498篇
  2007年   3241篇
  2006年   2998篇
  2005年   2560篇
  2004年   2239篇
  2003年   1908篇
  2002年   1658篇
  2001年   1508篇
  2000年   1261篇
  1999年   1093篇
  1998年   936篇
  1997年   786篇
  1996年   640篇
  1995年   619篇
  1994年   493篇
  1993年   444篇
  1992年   330篇
  1991年   214篇
  1990年   165篇
  1989年   142篇
  1988年   108篇
  1987年   70篇
  1986年   46篇
  1985年   57篇
  1984年   57篇
  1983年   35篇
  1982年   31篇
  1981年   28篇
  1980年   24篇
  1979年   9篇
  1978年   8篇
  1976年   8篇
  1959年   7篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
2.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
3.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
4.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
5.
In nature, the feathers of the goose Anser cygnoides domesticus stay superhydrophobic over a long term, thought as the main reason for keeping the surface clean. However, contaminants, especially those that are oleophilic or trapped within textures, cannot be removed off the superhydrophobic feathers spontaneously. Here, a different self-cleaning strategy based on superhydrophilic feathers is revealed that is imparted by self-coating of the amphiphilic saliva, which enables removing away low-surface-tension and/or small-size contaminants by forming directional water sheeting depending on their unique anisotropic microstructures. Particularly, the surface superhydrophilicity is switchable to superhydrophobicity upon exposure to air for maintaining a clean surface for a long time, which is further enhanced by coating with self-secreted preening oil. By alternate switching between a transient superhydrophilicity and a long-term stable superhydrophobicity, the goose feathers exhibit an integrated smart self-cleaning strategy, which is also shared by other aquatic birds. An attractive point is the re-entrant structure of the feathers, which facilitates not only liquid spreading on superhydrophilic feathers, but also long-term stability of the cleaned surface by shedding water droplets off the superhydrophobicity feathers. Thus, artificial self-cleaning microtextures are developed. The result renews the common knowledge on the self-cleaning of aquatic bird feathers, offering inspiration for developing bioinspired self-cleaning microtextures and coatings.  相似文献   
6.
The corrosion behaviour of Mg-6Gd-3Y-1Zn-0.3Ag (wt.%) alloy components with different sizes after cooling was investigated. The alloys in the small components (SC) cooled fast, which were composed of α-Mg matrix and coarse long-period stacking ordered (LPSO) phases. The alloys in the large components (LC) cooled slowly, and there were thin lamellar LPSO phases precipitating inside the grains, except for α-Mg matrix and coarse LPSO phases. The hydrogen evolution test revealed that the corrosion rate of LC sample was higher than that of SC sample. Electrochemical impedance spectroscopy (EIS) test showed that the surface film on LC alloys provided worse protection. The corrosion morphologies indicated that the precipitation of the thin lamellar LPSO phases in LC sample caused severe micro-galvanic corrosion, which accelerated the rupture of the surface film.  相似文献   
7.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
8.
9.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
10.
《Ceramics International》2022,48(7):9164-9171
The light-trapping structure is an effective method to increase solar light capture efficiency in the solar cells. In this study, Al-doped ZnO (AZO)/polystyrene (PS)/AZO tri-layer transparent conductive film with light-trapping structure was fabricated by magnetron sputtering and liquid phase methods. The structural, optical and electrical properties of the AZO films could be controlled by different growth conditions. When the sputtering pressure of the under-layer AZO film was 0.2 Pa, the discharge voltage was around 80 V, which was within the optimal process window for obtaining AZO film with high crystallinity. The optimal under-layer AZO film had a large surface roughness and a very low static water contact angle of 75.71°, promoting the relatively uniform distribution of PS spheres. Under this sputtering condition, the prepared AZO/PS/AZO tri-layer film had the highest crystallinity and least point defects. The highest carrier concentration and Hall mobility are 3.0 × 1021 cm-3and 5.39 cm2 V-1 s-1, respectively. Additionally, a transparent conductive film with the lowest resistivity value (3.88 × 10-4 Ω cm) and the highest average haze value (26.5%) was obtained by optimizing the process parameters. These properties were comparable to or exceed the reported values of surface-textured SnO2-based as well as ZnO-based TCOs films, making our films suitable for transparent electrode applications, especially in thin-film solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号